Gibberellins in developing wheat grains and their relationship to late maturity α-amylase (LMA)

Author:

Mares DarylORCID,Derkx AdindaORCID,Cheong JudyORCID,Zaharia Irina,Asenstorfer RobertORCID,Mrva KolumbinaORCID

Abstract

Abstract Main conclusion α-Amylase synthesis by wheat aleurone during grain development (late maturity α-amylase) appears to be independent of gibberellin unlike α-amylase synthesis by aleurone during germination or following treatment with exogenous GA. Abstract Late-maturity α-amylase (LMA) in wheat (Triticum aestivum L.) involves the synthesis of α-amylase by the aleurone tissue during grain development. Previous research identified a putative ent-copalyl diphosphate synthase gene, coding for an enzyme that controls the first step in gibberellin biosynthesis, that underlies the major genetic locus involved in variation in LMA phenotype. The reported results for gene transcript analysis, preliminary gibberellin analysis and the effects of DELLA mutants on LMA phenotype appeared to be consistent with involvement of gibberellin but did not provide definitive proof of a causal link. Conversely, several observations do not appear to be consistent with this hypothesis. In this current study, LMA phenotype, gibberellin profiles and ABA content were recorded for experiments involving susceptible and resistant genotypes, gibberellin biosynthesis inhibitors, genetic lines containing different LMA quantitative trait loci and treatment of distal halves of developing grains with exogenous gibberellin. The results suggested that gibberellin may not be a prerequisite for LMA expression and further that the mechanism involved in triggering α-amylase synthesis did not correspond to the model proposed for germination and gibberellin challenged aleurone of ripe grain. The results provide new insight into LMA and highlight the need to investigate alternate pathways for the induction of α-amylase gene transcription, the function of novel 1-β-OH gibberellins and other functions of DELLA proteins in developing grains.

Funder

Grains Research and Development Corporation

The University of Adelaide

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3