Lactation time influences the composition of Bifidobacterium and Lactobacillus at species level in human breast milk

Author:

Ding M.12,Zheng Y.3,Liu F.3,Tian F.12,Ross R.P.45,Stanton C.456,Yu R.7,Zhao J.12,Zhang H.1289,Yang B.123,Chen W.128

Affiliation:

1. State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China P.R.

2. School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122 Jiangsu, China P.R.

3. H&H Global Research and Technology Center, Guangzhou, China P.R.

4. International Joint Research Center for Probiotics & Gut Health, Jiangnan University, Wuxi, Jiangsu, China P.R.

5. APC Microbiome Ireland, University College Cork, Cork, Ireland.

6. Teagasc Food Research Centre, Moorepark, Fermoy, Cork P61 C996, Ireland.

7. Department of Neonatology, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University,48 Huaishu Alley, Liangxi District, Wuxi, 214002, China P.R.

8. National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China P.R.

9. Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi, China P.R.

Abstract

Human breast milk is a source of microorganisms for infants that play an important role in building infant gut health and immunity. The bacterial composition in human breast milk is influenced by lactation time. This study aimed to investigate the influence of lactation time on bacteria in breast milk at the genus level and the species levels of Bifidobacterium and Lactobacillus on days 2-4, 8, 14, and 30. Eighteen individuals were recruited and 60 milk samples were collected. The 16S rRNA gene, and the bifidobacterial groEL and lactobacilli groEL genes were used for amplicon sequencing. The results revealed that the alpha diversities of colostrum and transition 1 (day 8) milk were lower than that of transition 2 (day 14) and mature milk. PCoA analysis showed that bacterial composition in colostrum and transition 1 milk differed from transition 2 and mature milk. A lower relative abundance of Blautia was found in colostrum and transition 1 milk compared with mature milk and lower abundances of Ruminococcus, Dorea, and Escherichia-Shigella were found in transition 1 compared with mature milk. Bifidobacterium ruminantium, Limosilactobacillus mucosae, and Ligilactobacillus ruminis were the predominant species across all four lactation stages, while Bifidobacterium bifidum was lower in transition 1, and Bifidobacterium pseudocatenulatum and Bifidobacterium pseudolongum were higher in transition 1 milk. This study indicated that the bacterial composition in colostrum was more similar to that of transition 1 milk, whereas the bacterial community in transition 2 milk was similar to that of mature milk which suggests that bacterial composition in human breast milk shows stage-specific signatures even within a short period at both genus level and Bifidobacterium and Lactobacillus species levels, providing insights into probiotic supplementation for the nursing mother.

Publisher

Wageningen Academic Publishers

Subject

Microbiology (medical),Microbiology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3