Bifidobacterium longum subsp. infantis regulates Th1/Th2 balance through the JAK-STAT pathway in growing mice

Author:

Ding MengfanORCID,Li BowenORCID,Chen Haiqin,Ross R. Paul,Stanton Catherine,Jiang Shilong,Zhao Jianxin,Chen Wei,Yang Bo

Abstract

Objectives: Bifidobacterium longum subsp. infantis is a dominant bacterium in infant gut, which plays a critical role in maintaining the health and development of infants. This study investigated the abilities of eight different strains of B. longum subsp. infantis to regulate the T helper (Th)1/Th2 balance. Methods: Eight B . longum subsp. infantis strains, including I2MI (FJSWXI2MIM1), I4MI [FJSWXI4MI (CCFM1270)], I4MNI (FJSWXI4MNIM1), I5TI (FJSWXI5TIM1), I6TI (FJSWXI6TIM1), I8TI [FJSWXI8TI (CCFM1271)], I10TI [FJSWXI10TI (CCFM1272)], and B6MNI [BJSWXB6MNIM1 (CCFM1269)], were gavaged to BALB/C pups in both female (n = 8) and male (n = 8) mice starting from 1 to 3 weeks old (1 × 109 CFU/day/mice). Selected immune cells were assessed by immunofluorescence and flow cytometry. Cytokines and immunoglobulins were determined by ELISA. Bacterial and bifidobacterial communities were determined by 16S rRNA gene sequencing and bifidobacterial groEL sequencing. Results: B . longum subsp. infantis I4MI and I8TI were shown to increase the ration of colonic IgG2a/IgE in male mice (P < 0.05). B6MNI was demonstrated to significantly increase the levels of colonic IFN-γ and IgG2a, as well as the ratio of IgG2a/IgE in female mice (P < 0.05). It was also shown to significantly increase the ratio of colonic IgG2a/IgE (P < 0.05) and reduce the level of colonic IL-4 in male mice (P < 0.05). Furthermore, B6MNI was demonstrated to regulate colonic JAK/STAT pathway in both male and female mice. I4MI, I5TI, and B6MNI were shown to increase the relative abundance of Bifidobacterium and B. longum subsp. infantis in both male and female mice, whereas I8TI was only shown to increase the relative abundance of Bifidobacterium and B. longum subsp. infantis in male mice (P < 0.05). Conclusion: These results indicated supplementation with B. longum subsp. infantis in early infancy may regulate the Th1/Th2 immune balance, which may prevent the development of related diseases.

Publisher

OAE Publishing Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3