Influence of combined compressor and turbine deterioration on the overall performance of a jet engine using RANS simulation and Pseudo Bond Graph approach

Author:

Goeing Jan1ORCID,Seehausen Hendrik2ORCID,Pak Vladislav2,Lueck Sebastian1ORCID,Seume Joerg R.2ORCID,Friedrichs Jens1

Affiliation:

1. Institute of Jet Propulsion and Turbomachinery, Technische Universitaet Braunschweig Hermann- Blenk- Straße 37 D-38108 Braunschweig

2. Institute of Turbomachinery and Fluid Dynamics, Leibniz Universitaet Hannover An der Universität 1 D-30823 Garbsen

Abstract

In this study, numerical models are used to analyse the influence of isolated component deterioration as well as the combination of miscellaneous deteriorated components on the transient performance of a high-bypass jet engine. For this purpose, the aerodynamic impact of major degradation effects in a high-pressure compressor (HPC) and turbine (HPT) is modelled and simulated by using 3D CFD (Computational Fluid Dynamics). The impact on overall jet engine performance is then modelled using an 1D Reduced Order Model (ROM). Initially, the HPC performance is investigated with a typical level of roughness on vanes and blades and the HPT performance with an increasing tip clearance. Subsequently, the overall performance of the jet engines with the isolated and combined deteriorated domains is computed by the in-house 1D performance tool ASTOR (AircraftEngine Simulation for Transient Operation Research). Degradations have a significant influence on the system stability and transient effects. In ASTOR, a system of differential equations including the equations of motion and further ordinary differential equations is solved. Compared to common ROMs, this enables a higher degree of accuracy. The results of temperature downstream of the high-pressure compressor and low-pressure turbine as well as the specific fuel composition and the HP rotational speed are used to estimate the degree and type of engine deterioration. However, the consideration of the system stability is necessary to analyse the characterisation in more detail. Finally, a simplified model which merges two engines with individual deteriorated domains into one combined deteriorated engine, is proposed. The simplified model predicts the performance of an engine which has been simulated with combined deteriorated components.

Publisher

Global Power and Propulsion Society

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3