Signatures of Compressor and Turbine Faults in Gas Turbine Performance Diagnostics: A Review

Author:

Mathioudakis Konstantinos1ORCID,Alexiou Alexios1ORCID,Aretakis Nikolaos1ORCID,Romesis Christoforos1

Affiliation:

1. Laboratory of Thermal Turbomachines, School of Mechanical Engineering, National Technical University of Athens, 15780 Athens, Greece

Abstract

A review of existing research on signatures of gas turbine faults is presented. Faults that influence the aerothermodynamic performance of compressors and turbines, such as fouling, tip clearance increase, erosion, variable geometry system malfunction, and object impact damage, are covered. The signatures of such faults, which are necessary for establishing efficient gas path diagnostic methods, are studied. They are expressed through mass flow capacity and efficiency deviations. The key characteristics of the ratio of such deviations are investigated in terms of knowledge existing in published research. Research based on experimental studies, field data, and results of detailed fluid dynamic computations that exist today is found to provide such information. It is shown that although such signatures may be believed to have a unique correspondence to the type of component fault, this is only true when a particular engine and fault type are considered. The choice of diagnostic methods by developers should, thus, be guided by such considerations instead of using values taken from the literature without considering the features of the problem at hand.

Funder

Agency for Development of Defense

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3