The Measurement and Formation of Tip Clearance Loss

Author:

Bindon J. P.1

Affiliation:

1. University of Natal, Durban, South Africa; Whittle Laboratory, Cambridge, United Kingdom

Abstract

The detailed development of tip clearance loss from the leading to trailing edge of a linear turbine cascade was measured and the contributions made by mixing, internal gap shear flow, and endwall/ secondary flow were identified, separated, and quantified for the first time. Only 13 percent of the overall loss arises from endwall/secondary flow and of the remaining 87 percent, 48 percent is due to mixing and 39 percent is due to internal gap shear. All loss formation appears to be dominated by phenomena connected with the gap separation bubble. Flow established within the bubble by the pressure gradient separates as the gradient disappears and most of the internal loss is created by the entrainment of this separated fluid. When this high-loss leakage wake enters the mainstream, it separates due to the suction corner pressure gradient to create virtually all the measured mixing loss. It is suggested that the control of tip clearance loss by discharge coefficient reduction actually introduces loss. Performance improvements may result from streamlined tip geometries that optimize the tradeoff between entropy production and flow deflection.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 180 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Turbine blade tip aerothermal characteristics considering the influences of cavity tip shaping;International Journal of Thermal Sciences;2024-10

2. Loss map for aeroengine turbine blade equipped with tip inlet squealer;Journal of Mechanical Science and Technology;2024-09

3. Effects of blowing ratio and film hole arrangement on cavity blade tip cooling;Physics of Fluids;2024-07-01

4. Investigation on aerothermal characteristics of turbine blade tip clearance with large-scale and shrinkage groove;International Communications in Heat and Mass Transfer;2024-06

5. A study of angle parametric optimization of the composite honeycomb on turbine blade tip;Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering;2024-04-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3