Hybrid algorithm for weak signal detection in chaotic sea clutter

Author:

Xing Hong-Yan ,Zhang Qiang ,Xu Wei ,

Abstract

According to the empirical mode decomposition (EMD) theory, a prediction method of support vector machine (SVM) is proposed based on particle swarm optimization. The ensemble EMD method is used to decompose the signal into some intrinsic mode function components which are taken as the input of the SVM to predict the data. All the predicted values are combined, and the weak signals submerged in chaos background, including the transient signal and periodic signal, are detected from the prediction error. Lorenz attractor and the data from the McMaster IPIX radar sea clutter database are used in the simulation. The results show that the proposed method can effectively detect the weak target from chaotic signal. When the signal-to-noise ratio is 102.8225 dB in the chaotic noise background, by using the new method the root mean square error can be reduced by five orders of magnitude, reaching 0.00000033092, while the conventional SVM can reach only 0.049 under the condition of -54.60 dB and the weak target detected in sea clutter has the harmonic characteristics, which shows the prediction model has a lower threshold and error.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3