Statistical Detection of Weak Pulse Signal under Chaotic Noise Based on Elman Neural Network

Author:

Su Liyun1ORCID,Deng Li1,Zhu Wanlin1,Zhao Shengli1

Affiliation:

1. School of Science, Chongqing University of Technology, Chongqing 400054, China

Abstract

Weak signal detection is a significant problem in modern detection such as mechanical fault diagnosis. The uniqueness of chaos and good learning ability of neural networks provide new ideas and framework for weak signal detection field. In this paper, Elman neural network is applied to detect and recover weak pulse signal in chaotic noise. For detection problem of weak pulse signal under chaotic noise, based on short-term predictability of chaotic observations, phase space reconstruction for observed signals is carried out. And Elman deep learning adaptive detection model (EDAD model) is established for weak pulse signal detection, and a hypothesis test is used to detect weak pulse signal from the prediction error. For the recovery of weak pulse signal under chaotic noise, a double-layer Elman deep neural network recovery model (DEDR model) is proposed, which is based on the Elman deep learning network model and single-point jump model for weak pulse signal, and it is optimized with goal of minimizing mean square prediction error of the Elman model. The profile least squares method is applied to estimate parameters of the DEDR model for difficult recovery of weak pulse signal because the DEDR model is essentially a semiparametric model with parametric and nonparametric parts. In the end, simulation experiments show that the model built in this paper can effectively detect and recover weak pulse signal in the background of chaotic noise.

Funder

Fundamental and Advanced Research Project of CQ CSTC of China

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3