Application of artificial neural network for the ionizing radiation particle identification by the plastic scintillation detector response

Author:

Garankin Jevgenij,Plukis Artūras

Abstract

The separation of ionizing radiation particles is an important and challenging task, especially regarding neutrons and gamma rays. The separation of neutron and gamma radiation is necessary for safeguard purposes and control of nuclear reactions. Standard mathematical models of pulse analysis work well in the presence of large energy transfer (>1 MeV) from the particle to the detector. However, the quality of the separation decreases as the amount of transferred energy lessens, making it impossible to determine the exact type of particle at a sufficiently low-energy level. In this work, an artificial neural network model was used to solve the problem of separation at low-energy levels. The supervised machine learning (ML) model was used to analyse pulses received from the polyethylene naphthalate (PEN) scintillation detector. Several data sets after the PEN exposure to neutron/gamma (combined 239PuBe and 238PuBe source), alpha (238Pu) and beta (90Sr/90Y) sources were used to train the models. The information obtained from the separation of neutrons and gamma particles was compared with the information obtained using standard pulses delayed fluorescence analysis methods. The obtained results showed that the model was able to separate particles in the fields of low- and high-energy transfer.

Publisher

Lithuanian Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3