Prediction Algorithm of Collaborative Innovation Capability of High-End Equipment Manufacturing Enterprises Based on Random Forest

Author:

Xiao Zhenhong1,Shi Jianbang1ORCID,Tan Rui12,Shen Junyi3

Affiliation:

1. School of Economics and Management, Harbin Engineering University, Harbin 150001, China

2. College of Continuing Education, Beijing University of Technology, Beijing 100124, China

3. School of Economics and Management, Harbin University of Science and Technology, Harbin 150001, China

Abstract

This paper studies the competitiveness of listed companies in high-end equipment manufacturing industry by using random forest. Random forest is a supervised machine learning algorithm that is actually based on the regression and classification. It takes some important decisions that are always based upon the set of samples. It counts majority for the classification purposes while it takes an average for the regression. For empirical analysis, 88 listed companies are selected. It is found that there are great differences in comprehensive competitiveness among industries. Enterprise scale accounts for a high proportion in the comprehensive competitiveness, and its score often affects the comprehensive strength; and the gap between companies in the same industry is also obvious. The empirical evaluation results of this paper provide three enlightenments for enterprises to improve their comprehensive competitiveness, such as seizing the strategic opportunity to expand the market, expand the scale of enterprises, improve asset management, and narrow the industry gap.

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Computer Science Applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3