Application of CEEMDAN combined wavelet threshold denoising algorithm to suppressing scattering cluster in underwater lidar

Author:

Fan Chao-Yang,Li Chao-Feng,Yang Su-Hui,Liu Xin-Yu,Liao Ying-Qi, , , ,

Abstract

<sec>The echo of underwater lidar often contains a significant quantity of scattering clutters. In order to effectively suppress this scattering clutter and improve the ranging accuracy of underwater lidar, a novel denoising method based on complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) and wavelet threshold denoising is proposed.</sec><sec>The CEEMDAN-wavelet threshold denoising algorithm uses the correlation coefficient to select intrinsic mode function (IMF) components obtained from the CEEMDAN decomposition. The IMFs, which are more closely related to the original signal, are selected. Then, the wavelet thresholding denoising algorithm is applied to each of the selected IMFs to perform additional denoising. For each IMF component, specific threshold values are calculated based on their frequency and amplitude characteristics. Subsequently, the wavelet coefficients of the IMF components are processed by using these threshold values. Finally, the denoised IMF components are combined and reconstructed to obtain the final denoised signal. Applying the wavelet threshold denoising algorithm to IMF components can effectively remove noise components that cannot be removed by traditional CEEMDAN partial reconstruction methods. By using the threshold value calculated based on the characteristics of each IMF component, the wavelet thresholding denoising process is improved in comparison with directly using a single threshold value. This approach enhances the algorithm’s adaptability and enables more effective removal of noise from the signal.</sec><sec>We apply the proposed method to underwater ranging experiments. A 532 nm intensity-modulated continuous wave laser is used as a light source. Ranging is performed for a target in water with varying attenuation coefficients. A white polyvinyl chloride (PVC) reflector is used as a target. When the correlation extreme value is directly used to determine the delay at a distance of 3.75 attenuation length, it results in a ranging error of 19.2 cm. However, after applying the proposed method, the ranging error is reduced to 6.2 cm, thus effectively improving the ranging accuracy. These results demonstrate that the method has a significant denoising effect in underwater lidar system.</sec>

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference20 articles.

1. Weiling C, Ke G, Weisi L, Fei Y, En C 2019 IEEE T. Circ. Syst. Vid. 30 334

2. Flores N Y, Oswald S B, Leuven R S E W, Collas F P L 2022 Front. Env. Sci. 10 835

3. Jin D J, Wu F, Yu K, Li Q, Zhang Z G, Zhang Y J, Zhang W K, Li Y Z, Ji X Y, Gao Y, Li J, Gong J H 2020 Infrared Laser Eng. 49 9
金鼎坚, 吴芳, 于坤, 李奇, 张宗贵, 张永军, 张文凯, 李勇志, 冀欣阳, 高宇, 李京, 龚建华 2020 红外与激光工程 49 9

4. Gangelhoff J, Werner C S, Reiterer A 2022 Remote Sensing of the Ocean, Sea Ice, Coastal Waters, and Large Water Regions 2022 Berlin, Germany, November 6–10, 2022 p24

5. Zhou G Q, Zhou X, Li W H, Zhao D W, Song B, Xu C, Zhang H T, Liu Z X, Xu J S, Lin G C, Deng R H, Hu H C, Tan Y Z, Lin J C, Yang J Z, Nong X Q, Li C Y, Zhao Y Q, Wang C, Zhang L P, Zou L P 2022 Remote Sens. 14 5880

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3