Two-dimensional hole gas in p-GaN/p-AlxGa1-xN heterojunctions and its influence on Ohmic contact

Author:

Wang Xiao-Yong ,Chong Ming ,Zhao De-Gang ,Su Yan-Mei , ,

Abstract

In this paper, the characteristics of the two-dimensional hole gas (2DHG) in p-GaN/p-AlxGa1-xN heterojunction is investigated in detail, based on self-consistent solutions of one-dimensional Poisson and Schrdinger equations. The valence band structures and the 2DHG distributions are calculated in the cases of different Al components and piezoelectric polarization effects. Then, the influences of Al components and piezoelectric polarization effects on 2DHG are analysed specifically. The results show that with the increase of Al component, the quantum well at the heterojunction interface turns deeper and narrower, which leads to an accelerated growth of the 2DHG peak density and a line increase of the 2DHG sheet concentration. Furthermore, piezoelectric polarization effects also make the quantum well at the heterojunction interface deeper and narrower, at the same time, the Fermi level moves close to the top of the barrier and the location of peak density moves close to the heterojunction interface. In addition, the influences of valence band offset and acceptor doping concentration on 2DHG are relatively small. Ohmic contact of p-AlxGa1-xN is fabricatea with the 2DHG, and its I-V characteristic is much better than that without the 2DHG, which indicates that the 2DHG can significantly improve the performance of p-AlxGa1-xN ohmic contact.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3