Physical mechanism of uniaxial strain in nano-scale metal oxide semiconductor transistor caused by sin film

Author:

Yang Min-Yu ,Song Jian-Jun ,Zhang Jing ,Tang Zhao-Huan ,Zhang He-Ming ,Hu Hui-Yong , ,

Abstract

Performance of a nano-scale MOS (metal-oxide-semiconductor) can be significantly improved by uniaxial stress, caused by the SiN film deposited on the surface of MOS. Although this technique has been widely used in the performance improvement of CMOS and integrated circuit, the physical mechanism for instance, how is the strain in MOS channel caused by the SiN film? how about the relation between the kinds of the structure of SiN film needed to be discussed in depth. On the basis of the ISE TCAD, three typical models for stress analysis——such as the segmentation structure model, the closed-loop structure model and the integrity structure model——are proposed. And then, this paper reveals the physical mechanism about how the stress in MOS channel is caused by the SiN film and how much the magnitude of the stress in MOS channel is induced. Results shows that: 1) The “step” structure is the necessary condition for the strain in the MOS channel to be caused by the SiN film. 2) With the tendency for SiN film to shrink or expand, the film may lead to the deformation along the MOS source/drain region of the Si material, which causes the deformation of Si in the channel. 3) The whole of the channel stress in SiN film is equal to the sum of the stress in the source/drain imposed by the SiN film above the source/drain, the stress which the “closed loop structure” applies to the channel, and the stress generated in the channel by the whole SiN film. Our conclusions may provide the valuable references to the manufacture of nano-scaled MOS and the research of the novel inducing stress technique.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3