Numerical investigation of low pressure inductively coupled plasma sources: A review

Author:

Zhang Yu-Ru,Gao Fei,Wang You-Nian,

Abstract

Inductively coupled plasmas have been widely used in the etch process due to the high plasma density, simple reactor geometry, etc. Since the plasma characteristics are difficult to understand only via experiments, the numerical study seems to be a valuable and effective tool, which could help us to gain an in-depth insight into the plasma properties and the underlying mechanisms. During the past few years, various models have been employed to investigate inductive discharges, such as global model, fluid model, fluid/Monte Carlo collision hybrid model, biased sheath model, particle-in-cell/Monte Carlo collision hybrid model, etc. Since the plasma parameters are volume averaged in the global model, which effectively reduces the computational burden, it is usually used to study the reactive gas discharges with a complex chemistry set. In order to obtain the spatial distribution, a two-dimensional or three-dimensional fluid model is necessary. However, in the fluid model, the electron energy distribution function is assumed to be Maxwellian, which is invalid under special discharge conditions. For instance, strong electric field and low pressure may result in non-Maxwellian distributions, such as bi-Maxwellian distribution, two-temperature distribution, etc. Therefore, a fluid/Monte Carlo collision hybrid model is adopted to take the electron kinetics into account. Besides, a separate biased sheath model is necessary to study the influence of the sheath on the plasma properties self-consistently. The particle-in-cell/Monte Carlo collision hybrid model is a fully kinetic method based on the first-principles, which could be used to investigate the non-local and non-thermal equilibrium phenomena. In conclusion, the numerical investigation of inductively coupled plasmas has a significant importance for plasma process optimization.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3