Author:
Ito Asuka,Ikeda Tomonori,Miuchi Kentaro,Soda Jiro
Abstract
AbstractA novel method for extending the frequency frontier in gravitational wave observations is proposed. It is shown that gravitational waves can excite a magnon. Thus, gravitational waves can be probed by a graviton–magnon detector which measures resonance fluorescence of magnons. Searching for gravitational waves with a wave length $$\lambda $$λ by using a ferromagnetic sample with a dimension l, the sensitivity of the graviton–magnon detector reaches spectral densities, around $$5.4 \times 10^{-22} \times (\frac{l}{\lambda /2\pi })^{-2} \ [\mathrm{Hz}^{-1/2}]$$5.4×10-22×(lλ/2π)-2[Hz-1/2] at 14 GHz and $$8.6 \times 10^{-21} \times (\frac{l}{\lambda /2\pi })^{-2} \ [\mathrm{Hz}^{-1/2}]$$8.6×10-21×(lλ/2π)-2[Hz-1/2] at 8.2 GHz, respectively.
Publisher
Springer Science and Business Media LLC
Subject
Physics and Astronomy (miscellaneous),Engineering (miscellaneous)
Cited by
61 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献