Ultrahigh frequency primordial gravitational waves beyond the kHz: The case of cosmic strings

Author:

Servant Géraldine123ORCID,Simakachorn Peera4ORCID

Affiliation:

1. Deutsches Elektronen-Synchrotron DESY

2. Universität Hamburg

3. CERN

4. Universitat de València-CSIC

Abstract

We investigate gravitational-wave backgrounds (GWBs) of primordial origin that would manifest only at ultrahigh frequencies, from kilohertz to 100 gigahertz, and leave no signal at LIGO, the Einstein Telescope, the Cosmic Explorer, LISA, or pulsar-timing arrays. We focus on GWBs produced by cosmic strings and make predictions for the GW spectra scanning over high-energy scale (beyond 1010GeV) particle physics parameters. Signals from local string networks can easily be as large as the big bang nucleosynthesis/cosmic microwave background bounds, with a characteristic strain as high as 1026 in the 10 kHz band, offering prospects to probe grand unification physics in the 10141017GeV energy range. In comparison, GWB from axionic strings is suppressed (with maximal characteristic strain 1031) due to the early matter era induced by the associated heavy axions. We estimate the needed reach of hypothetical futuristic GW detectors to probe such GWB and, therefore, the corresponding high-energy physics processes. Beyond the information of the symmetry-breaking scale, the high-frequency spectrum encodes the microscopic structure of the strings through the position of the UV cutoffs associated with cusps and kinks, as well as potential information about friction forces on the string. The IR slope, on the other hand, reflects the physics responsible for the decay of the string network. We discuss possible strategies for reconstructing the scalar potential, particularly the scalar self-coupling, from the measurement of the UV cutoff of the GW spectrum. Published by the American Physical Society 2024

Funder

Generalitat Valenciana

Deutsche Forschungsgemeinschaft

Publisher

American Physical Society (APS)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3