Data classification and parameter estimations with deep learning to the simulated time-domain high-frequency gravitational waves detections

Author:

Shi B,Yuan X L,Zheng H,Wang X D,Li JORCID,Jiang Q QORCID,Li F Y,Wei L F

Abstract

Abstract High-frequency gravitational wave (HFGW) detection is a great challenge, as its signal is significantly weak compared with the relevant background noise in the same frequency bands. Therefore, besides designing and running the feasible installation for the experimental weak-signal detection, developing various effective approaches to process the big detected data for extracting the information about the GWs is also particularly important. In this paper, we focus on the simulated time-domain detected data of the electromagnetic response of the GWs in high-frequency band, typically such as Gigahertz. Specifically, we develop an effective deep learning method to implement the classification of the simulated detection data, which includes the strong electromagnetic background noise in the same frequency band, for the parameter estimations of the HFGWs. The simulatively detected data is generated by the transverse first-order electromagnetic responses of the HFGWs passing through a high stationary magnetic field biased by a high-frequency Gaussian beam. We propose a convolutional neural network model to implement the classification of the simulated detection data, whose accuracy can reach more than 90%. With these data being served as the positive sample datasets, the physical parameters of the simulatively detected HFGWs can be effectively estimated by matching the sample datasets with the noise-free template library one by one. The confidence levels of these extracted parameters can reach 95% in the corresponding confidence interval. Through the multiple data experiments, the effectiveness and reliability of the proposed data processing method are verified. The proposed method could be generalized to big data processing for the detection of experimental HFGWs in the future.

Funder

National Natural Science Foundation of China

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3