Rhombohedral-stacked bilayer transition metal dichalcogenides for high-performance atomically thin CMOS devices

Author:

Li Xuefei1ORCID,Shi Xinhang1ORCID,Marian Damiano2ORCID,Soriano David23ORCID,Cusati Teresa2ORCID,Iannaccone Giuseppe2,Fiori Gianluca2ORCID,Guo Qi1ORCID,Zhao Wenjie1,Wu Yanqing4ORCID

Affiliation:

1. Wuhan National High Magnetic Field Center and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China.

2. Dipartimento di Ingegneria dell’Informazione, Università di Pisa, Via Girolamo Caruso 16, Pisa 56122, Italia.

3. Departamento de Física Aplicada, Universidad de Alicante, San Vicente del Raspeig 03690, Spain.

4. School of Integrated Circuits and Key Laboratory of Microelectronic Devices and Circuits (MOE), Peking University, Beijing 100871, China.

Abstract

Van der Waals coupling with different stacking configurations is emerging as a powerful method to tune the optical and electronic properties of atomically thin two-dimensional materials. Here, we investigate 3R-stacked transition-metal dichalcogenides as a possible option for high-performance atomically thin field-effect transistors (FETs). We report that the effective mobility of 3R bilayer WS 2 (WSe 2 ) is 65% (50%) higher than that of 2H WS 2 (WSe 2 ). The 3R bilayer WS 2 n-type FET exhibits a high on-state current of 480 μA/μm at V ds  = 1 V and an ultralow on-state resistance of 1 kilohm·μm. Our observations, together with multiscale simulations, reveal that these improvements originate from the strong interlayer coupling in the 3R stacking, which is reflected in a higher conductance compared to the 2H stacking. Our method provides a general and scalable route toward advanced channel materials in future electronic devices for ultimate scaling, especially for complementary metal oxide semiconductor applications.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3