Reduced dopant-induced scattering in remote charge-transfer-doped MoS 2 field-effect transistors

Author:

Jang Juntae1ORCID,Kim Jae-Keun2,Shin Jiwon1ORCID,Kim Jaeyoung1ORCID,Baek Kyeong-Yoon1ORCID,Park Jaehyoung1,Park Seungmin3,Kim Young Duck3ORCID,Parkin Stuart S. P.2ORCID,Kang Keehoon45ORCID,Cho Kyungjune6ORCID,Lee Takhee15ORCID

Affiliation:

1. Department of Physics and Astronomy, Seoul National University, Seoul 08826, Korea.

2. Max-Planck Institute of Microstructure Physics, Weinberg 2, 06120 Halle, Saale, Germany.

3. Department of Physics, Kyung Hee University, Seoul 02447, Korea.

4. Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Korea.

5. Institute of Applied Physics, Seoul National University, Seoul 08826, Korea.

6. Soft Hybrid Materials Research Center, Korea Institute of Science and Technology, Seoul 02792, Korea.

Abstract

Efficient doping for modulating electrical properties of two-dimensional (2D) transition metal dichalcogenide (TMDC) semiconductors is essential for meeting the versatile requirements for future electronic and optoelectronic devices. Because doping of semiconductors, including TMDCs, typically involves generation of charged dopants that hinder charge transport, tackling Coulomb scattering induced by the externally introduced dopants remains a key challenge in achieving ultrahigh mobility 2D semiconductor systems. In this study, we demonstrated remote charge transfer doping by simply inserting a hexagonal boron nitride layer between MoS 2 and solution-deposited n-type dopants, benzyl viologen. A quantitative analysis of temperature-dependent charge transport in remotely doped devices supports an effective suppression of the dopant-induced scattering relative to the conventional direct doping method. Our mechanistic investigation of the remote doping method promotes the charge transfer strategy as a promising method for material-level tailoring of electrical and optoelectronic devices based on TMDCs.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3