CMOS-compatible compute-in-memory accelerators based on integrated ferroelectric synaptic arrays for convolution neural networks

Author:

Kim Min-Kyu1ORCID,Kim Ik-Jyae1ORCID,Lee Jang-Sik1ORCID

Affiliation:

1. Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea.

Abstract

Convolutional neural networks (CNNs) have gained much attention because they can provide superior complex image recognition through convolution operations. Convolution processes require repeated multiplication and accumulation operations, which are difficult tasks for conventional computing systems. Compute-in-memory (CIM) that uses parallel data processing is an ideal device structure for convolution operations. CIM based on two-terminal synaptic devices with a crossbar structure has been developed, but unwanted leakage current paths and the high-power consumption remain as the challenges. Here, we demonstrate integrated ferroelectric thin-film transistor (FeTFT) synaptic arrays that can provide efficient parallel programming and data processing for CNNs by the selective and accurate control of polarization in the ferroelectric layer. In addition, three-terminal FeTFTs can act as both nonvolatile memory and access device, which tackle issues from two-terminal devices. An integrated FeTFT synaptic array with parallel programming capabilities can perform convolution operations to extract image features with a high-recognition accuracy.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3