Affiliation:
1. Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea.
Abstract
Convolutional neural networks (CNNs) have gained much attention because they can provide superior complex image recognition through convolution operations. Convolution processes require repeated multiplication and accumulation operations, which are difficult tasks for conventional computing systems. Compute-in-memory (CIM) that uses parallel data processing is an ideal device structure for convolution operations. CIM based on two-terminal synaptic devices with a crossbar structure has been developed, but unwanted leakage current paths and the high-power consumption remain as the challenges. Here, we demonstrate integrated ferroelectric thin-film transistor (FeTFT) synaptic arrays that can provide efficient parallel programming and data processing for CNNs by the selective and accurate control of polarization in the ferroelectric layer. In addition, three-terminal FeTFTs can act as both nonvolatile memory and access device, which tackle issues from two-terminal devices. An integrated FeTFT synaptic array with parallel programming capabilities can perform convolution operations to extract image features with a high-recognition accuracy.
Publisher
American Association for the Advancement of Science (AAAS)
Cited by
46 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献