Two-dimensional fully ferroelectric-gated hybrid computing-in-memory hardware for high-precision and energy-efficient dynamic tracking

Author:

Lu Tian1ORCID,Xue Junying2ORCID,Shen Penghui1ORCID,Liu Houfang1ORCID,Gao Xiaoyue3,Li Xiaomei34,Hao Jian5ORCID,Huang Dapeng1,Zhao Ruiting1,Yan Jianlan1,Yang Mingdong1,Yan Bonan6ORCID,Gao Peng3,Lin Zhaoyang2ORCID,Yang Yi1ORCID,Ren Tian-Ling1ORCID

Affiliation:

1. School of Integrated Circuits and Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing, China.

2. Department of Chemistry, Tsinghua University, Beijing, China.

3. Electron Microscopy Laboratory and International Center for Quantum Materials, School of Physics, Peking University, Beijing, China.

4. School of Integrated Circuits, East China Normal University, Shanghai, China.

5. College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, China.

6. Institute for Artificial Intelligence, Peking University, Beijing, China.

Abstract

Computing in memory (CIM) breaks the conventional von Neumann bottleneck through in situ processing. Monolithic integration of digital and analog CIM hardware, ensuring both high precision and energy efficiency, provides a sustainable paradigm for increasingly sophisticated artificial intelligence (AI) applications but remains challenging. Here, we propose a complementary metal-oxide semiconductor–compatible ferroelectric hybrid CIM platform that consists of Boolean logic and triggers for digital processing and multistage cell arrays for analog computation. The basic ferroelectric-gated units are assembled with solution-processable two-dimensional (2D) molybdenum disulfide atomic-thin channels at a wafer-scale yield of 96.36%, delivering high on/off ratios (>10 7 ), high endurance (>10 12 ), long retention time (>10 years), and ultralow cycle-to-cycle/device-to-device variations (~0.3%/~0.5%). Last, we customize a highly compact 2D hybrid CIM system for dynamic tracking, achieving a high accuracy of 99.8% and a 263-fold improvement in power efficiency compared to graphics processing units. These results demonstrate the potential of 2D fully ferroelectric-gated hybrid hardware for developing versatile CIM blocks for AI tasks.

Publisher

American Association for the Advancement of Science (AAAS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3