Reconfigurable spintronic logic gate utilizing precessional magnetization switching
Author:
Li Xiaoguang1, Liu Ting1, An Hongyu2, Chen Shi1, Zhao Yuelei3, Yang Sheng3, Xu Xiaohong4, Zhou Cangtao1, Zhang Hua1, Zhou Yan3
Affiliation:
1. College of Engineering Physics, Shenzhen Technology University 2. College of New Materials and New Energies, Shenzhen Technology University 3. The Chinese University of Hong Kong, Shenzhen 4. Shanxi Normal University
Abstract
Abstract
In traditional von Neumann computing architecture, the efficiency of the system is often hindered by the data transmission bottleneck between the processor and memory. A prevalent approach to mitigate this limitation is the use of non-volatile memory for in-memory computing, with spin-orbit torque (SOT) magnetic random-access memory (MRAM) being a leading area of research. In our study, we numerically demonstrate that a precise combination of damping-like and field-like spin-orbit torques can facilitate precessional magnetization switching. This mechanism enables the binary memristivity of magnetic tunnel junctions (MTJs) through the modulation of the amplitude and width of input current pulses. Building on this foundation, we have developed a scheme for a reconfigurable spintronic logic gate capable of directly implementing Boolean functions such as AND, OR, and XOR. This work is anticipated to leverage the sub-nanosecond dynamics of SOT-MRAM cells, potentially catalyzing further experimental developments in spintronic devices for in-memory computing.
Publisher
Research Square Platform LLC
Reference33 articles.
1. 1. S. Shreya, A. Jain, B.K. Kaushik, Computing-in-memory using voltage-controlled spin-orbit torque based MRAM array, Microelectronics Journal, 109 (2021). 2. 2. Y.-C. Chiu, W.-S. Khwa, C.-S. Yang, S.-H. Teng, H.-Y. Huang, F.-C. Chang, Y. Wu, Y.-A. Chien, F.-L. Hsieh, C.-Y. Li, G.-Y. Lin, P.-J. Chen, T.-H. Pan, C.-C. Lo, R.-S. Liu, C.-C. Hsieh, K.-T. Tang, M.-S. Ho, C.-P. Lo, Y.-D. Chih, T.-Y.J. Chang, M.-F. Chang, A CMOS-integrated spintronic compute-in-memory macro for secure AI edge devices, Nature Electronics, 6 (2023) 534–543. 3. 3. A. Sebastian, M. Le Gallo, R. Khaddam-Aljameh, E. Eleftheriou, Memory devices and applications for in-memory computing, Nat Nanotechnol, 15 (2020) 529–544. 4. 4. S. Jung, H. Lee, S. Myung, H. Kim, S.K. Yoon, S.W. Kwon, Y. Ju, M. Kim, W. Yi, S. Han, B. Kwon, B. Seo, K. Lee, G.H. Koh, K. Lee, Y. Song, C. Choi, D. Ham, S.J. Kim, A crossbar array of magnetoresistive memory devices for in-memory computing, Nature, 601 (2022) 211–216. 5. 5. M. Lanza, A. Sebastian, W.D. Lu, M. Le Gallo, M.F. Chang, D. Akinwande, F.M. Puglisi, H.N. Alshareef, M. Liu, J.B. Roldan, Memristive technologies for data storage, computation, encryption, and radio-frequency communication, Science, 376 (2022) eabj9979.
|
|