Design of Area-speed Efficient Anurupyena Vedic Multiplier for Deep Learning Applications

Author:

M KALAISELVI C1ORCID,S Sabeenian R1

Affiliation:

1. Sona College of Technology

Abstract

Abstract Hardware such as multipliers and dividers is necessary for all electronic systems. This paper explores Vedic mathematics techniques for high-speed and low-area multiplication. In the study of multiplication algorithms, various bits-width ranges of the Anurupyena sutra are used. Parallelism is employed to address challenging problems in recent studies. Various designs have been developed for the FPGA implementation employing VLSI design approaches and parallel computing technology. Signal processing, machine learning, and reconfigurable computing research should be closely monitored as artificial intelligence develops. To enable deep learning algorithms, continued research should be done on energy-constrained computing technology. Multipliers and adders are key components of deep learning algorithms. The multiplier is an energy-intensive component of signal processing in ALU, Convolutional Neural Networks (CNN), and Deep Neural Networks (DNN). For the DNN, this method introduces the Booth multiplier blocks and the carry-save multiplier in the Anurupyena architecture. Traditional multiplication methods like the array multiplier, Wallace multiplier, and Booth multiplier are contrasted with the Vedic mathematics algorithms. On a specific hardware platform, Vedic algorithms perform faster, use less power, and take up less space. Implementations were carried out using Verilog HDL and Xilinx Vivado 2019.1 on Kintex-7. The area and propagation delay were reduced compared to other multiplier architectures.

Publisher

Research Square Platform LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Vedic Perspective of Wellness and Wellbeing;Advances in Psychology, Mental Health, and Behavioral Studies;2024-01-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3