In situ computed tomography for the characterization of the fatigue damage development in glass fiber-reinforced polyurethane

Author:

Hülsbusch Daniel1,Mrzljak Selim1,Walther Frank1

Affiliation:

1. Dortmund , Germany

Abstract

Abstract Fiber-reinforced polymers show a continuous material degradation under cyclic loading, which is why damage development has to be investigated for an exact assessment of fatigue properties. In order to obtain information on damage in the internal volume, conventional mechanical test methods require accompanying support by further developed techniques. In this study, a methodology for in situ computed tomography has been developed and applied to glass fiber-reinforced polyurethane. Polyurethane has advantages over epoxy in terms of impact strength, damage tolerance and abrasion, which are important for various applications. Fatigue properties, on the other hand, are largely unknown. Optimized imaging parameters for computed tomography have been established in order to obtain detailed 3D volume images suitable for analysis. The 3D volumes of the damage state were recorded according to defined fatigue load steps and used to evaluate and correlate the damage development with the mechanical properties. The results confirm known damage characteristics of fiber-reinforced composites but also show material and structure-related differences in crack formation and propagation.

Publisher

Walter de Gruyter GmbH

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3