Effect of Microcracks on the Tensile Properties of 3D Woven Composites

Author:

Huang JianORCID,Zhao Qian,Feng Yubo,Zhou Haili,Sun Fangfang,Wang Kun,Li Chao,Zhang Liquan,Sun Xuekun

Abstract

This study provides an experimental investigation on the effect of microcracks on the tensile properties of 3D woven composites. A four-step experimental procedure using the combination of micro-XCT, acoustic emission (AE) and digital image correlation (DIC) is here proposed. Typical tensile damage behaviors were characterized by the stress–strain curves, AE signal analysis and DIC full field strain measurement. Due to a typical four stages stress–strain behavior, phenomena of stiffness degradation and stiffness hardening were successively found during the tensile process. Samples with various damage levels were produced by the in situ AE monitoring. Their 3D microcrack morphologies show the crack initiation, propagation process and the damage modes. Detectable damages initiated during the stress range from 65.98% to 72.93% σs. The cracks volume fraction (CVF) shows a positive correlation relationship with the corresponding tensile load. Moreover, the CVF was used to characterize the degree of damage. The samples with various phased damages were tested again in the fourth step to obtain their residual modulus and residual strength. Detected microcracks have little influence on the residual strength, while the residual modulus witnesses a regular decrease along with the damage increase. The effect of microcracks on the tensile properties is characterized by the relationships between the gradually increased damages and the corresponding residual properties which provide a foundation for damage evaluation of 3D woven structures in service.

Funder

Natural Science Foundation of Jiangsu Province

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3