Predicting standardized ileal digestibility of lysine in full-fat soybeans using chemical composition and physical characteristics

Author:

Kaewtapee ChanwitORCID,Mosenthin RainerORCID

Abstract

Objective: The present work was conducted to evaluate suitable variables and develop prediction equations using chemical composition and physical characteristics for estimating standardized ileal digestibility (SID) of lysine (Lys) in full-fat soybeans (FFSB).Methods: The chemical composition and physical characteristics were determined including trypsin inhibitor activity (TIA), urease activity (UA), protein solubility in 0.2% potassium hydroxide (KOH), protein dispersibility index (PDI), lysine to crude protein ratio (Lys:CP), reactive Lys:CP ratio, neutral detergent fiber, neutral detergent insoluble nitrogen (NDIN), acid detergent insoluble nitrogen (ADIN), acid detergent fiber, L* (lightness), and a* (redness). Pearson’s correlation (r) was computed, and the relationship between variables was determined by linear or quadratic regression. Stepwise multiple regression was performed to develop prediction equations for SID of Lys.Results: Negative correlations (p<0.01) between SID of Lys and protein quality indicators were observed for TIA (r = –0.80), PDI (r = –0.80), and UA (r = –0.76). The SID of Lys also showed a quadratic response (p<0.01) to UA, NDIN, TIA, L*, KOH, a* and Lys:CP. The best-fit model for predicting SID of Lys in FFSB included TIA, UA, NDIN, and ADIN, resulting in the highest coefficient of determination (R2 = 0.94).Conclusion: Quadratic regression with one variable indicated the high accuracy for UA, NDIN, TIA, and PDI. The multiple linear regression including TIA, UA, NDIN, and ADIN is an alternative model used to predict SID of Lys in FFSB to improve the accuracy. Therefore, multiple indicators are warranted to assess either insufficient or excessive heat treatment accurately, which can be employed by the feed industry as measures for quality control purposes to predict SID of Lys in FFSB.

Funder

Ministry of Higher Education, Science, Research and Innovation

Kasetsart University

Publisher

Asian Australasian Association of Animal Production Societies

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3