Skeletal muscle metabolism in sea-acclimatized king penguins: I. Thermogenic mechanisms

Author:

Roussel Damien1ORCID,Le Coadic Marion1,Rouanet Jean-Louis1,Duchamp Claude1ORCID

Affiliation:

1. Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNA, F-69622, Villeurbanne, France

Abstract

At fledging, king penguin juveniles undergo a major energetic challenge to overcome the intense and prolonged energy demands for thermoregulation and locomotion imposed by life in cold seas. Among other responses, sea acclimatization triggers fuel selection in skeletal muscle metabolism toward lipid oxidation in vitro, which is reflected by a drastic increase in lipid-induced thermogenesis in vivo. However, the exact nature of skeletal muscle thermogenic mechanisms (shivering and/or non-shivering thermogenesis) remains undefined. The aim of the present study was to determine in vivo whether the capacity for non-shivering thermogenesis was enhanced by sea acclimatization. We measured body temperature, metabolic rate, heart rate, and shivering activity in fully immersed king penguins (Aptenodytes patagonicus) exposed to water temperatures ranging from 12°C to 29°C. Results from terrestrial pre-fledging juveniles were compared with those from sea-acclimatized immatures. The capacity for thermogenesis in water was as effective in juveniles as in immatures, while the capacity for non-shivering thermogenesis was not reinforced by sea acclimatization. This result suggests that king penguins mainly rely on skeletal muscle contraction (shivering or locomotor activity) to maintain endothermy at sea. Sea-acclimatized immature penguins also exhibited higher shivering efficiency and oxygen pulse (amount of oxygen consumed or energy expended per heart-beat) than pre-fledging juvenile birds. Such increase in shivering and cardiovascular efficiency may favor a more efficient activity-thermoregulatory heat substitution providing penguins the aptitudes to survive the tremendous energetic challenge imposed by marine life in cold circumpolar oceans.

Funder

French Polar Institute Paul-Emile Victor

Terres Australes et Antarctiques Françaises

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3