Interactive effects of temperature acclimation and dietary fatty acids on metabolic rate and body composition of zebra finches (Taeniopygia guttata)

Author:

Campbell Michael J.,Mastromonaco Gabriela F.ORCID,Burness GaryORCID

Abstract

AbstractClimate change is contributing to geographic range shifts in many bird species, with possible exposure to novel diets. How individuals respond physiologically across chronic time frames to the interacting effects of diet and environmental temperature has been little explored. We acclimated zebra finches to either cool (20-24°C) or thermoneutral (35°C) temperatures over 6-months and provided them with diets enriched in either unsaturated or saturated fatty acids. We measured body mass throughout the study, and basal metabolic rate (BMR) and body composition at 3- and 6-months, respectively. Individuals held in cool conditions and fed a diet enriched with unsaturated fatty acids lost mass initially relative to the other groups, however, effects were reversible, and all individuals had a similar mass at 6- months. Chronic exposure to cool conditions increased BMR and the mass of the pectoral muscle and visceral organs. However, we could detect no long-term effect of diet on any physiological parameter. Our results contrast with those of birds studied over acute time frames, in which diet and temperature interact to determine energy expenditure. Over chronic time frames individuals appear to reach a new steady-state, with long-term physiological responses driven primarily by thermoregulatory responses to environmental temperature.Research Highlights:With climate change, birds may encounter novel diets and temperaturesIn zebra finches we show that chronic acclimation to cool temperatures increased energy expenditure and changed body composition.Dietary fatty acid content had little long-term impact on the physiological parameters we measured.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3