Selection-driven adaptation to the extreme Antarctic environment in the Emperor penguin

Author:

Pirri Federica,Ometto Lino,Fuselli Silvia,Fernandes Flávia A. N.,Ancona Lorena,Le Bohec Céline,Zane Lorenzo,Trucchi Emiliano

Abstract

AbstractThe eco-evolutionary history of penguins is profoundly influenced by their shift from temperate to cold environments. Breeding only in Antarctica during the winter, the Emperor penguin appears as an extreme outcome of this process, with unique features related to insulation, heat production and energy management. However, whether this species actually diverged from a less cold-adapted ancestor, thus more similar in ecology to its sister species, the King penguin, is still an open question. As the Antarctic niche shift likely resulted in vast changes in selective pressure experienced by the Emperor penguin, the identification and relative quantification of the genomic signatures of selection, unique to each of these sister species, could answer this question. Applying a suite of phylogeny-based methods on 7,651 orthologous gene alignments of seven penguins and 13 other birds, we identified a set of candidate genes showing significantly different selection regimes either in the Emperor or in the King penguin lineage. Our comparative approach unveils a more pervasive selection shift in the Emperor penguin, supporting the hypothesis that its extreme cold adaptation is a derived state from a more King penguin-like ecology. Among the candidate genes under selection in the Emperor penguin, four genes (TRPM8, LEPR, CRB1, and SFI1) were identified before in other cold adapted vertebrates, while, on the other hand, 161 genes can be assigned to functional pathways relevant to cold adaptation (e.g., cardiovascular system, lipid, fatty acid and glucose metabolism, insulation, etc.). Our results show that extreme cold adaptation in the Emperor penguin largely involved unique genetic options which, however, affect metabolic and physiological traits common to other cold-adapted homeotherms.

Publisher

Cold Spring Harbor Laboratory

Reference92 articles.

1. TranslatorX: multiple alignment of nucleotide sequences guided by amino acid translations;Nucleic Acids Research,2010

2. Differentially expressed genes associated with adaptation to different thermal environments in three sympatric CubanAnolislizards

3. The influence of Physical conditions in the genesis of species;Radical Review,1877

4. Polygenic adaptation: a unifying framework to understand positive selection;Nature Reviews Genetics,2020

5. Avian energy storage;Current Ornithology,1990

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3