Serca Uncoupling May Facilitate Cold Acclimation in Dark-Eyed Juncos (Junco hyemalis) without Regulation by Sarcolipin or Phospholamban

Author:

Elowe Cory R1ORCID,Stager Maria1

Affiliation:

1. Department of Biology, University of Massachusetts, 221 Morrill Science Center III , 611 North Pleasant Street, Amherst, MA 01003-9297 , USA

Abstract

Synopsis Homeothermic endotherms defend their body temperature in cold environments using a number of behavioral and physiological mechanisms. Maintaining a stable body temperature primarily requires heat production through shivering or non-shivering thermogenesis (NST). Although the use of NST is well established in mammalian systems, the mechanisms and extent to which NST is used in birds are poorly understood. In mammals, one well-characterized mechanism of NST is through uncoupling of Ca2+ transport from ATP hydrolysis by sarco/endoplasmic reticulum ATPase (SERCA) in the skeletal muscle, which generates heat and may contribute to Ca2+ signaling for fatigue resistance and mitochondrial biogenesis. Two small proteins—sarcolipin (SLN) and phospholamban (PLN)—are known to regulate SERCA in mammals, but recent work shows inconsistent responses of SLN to cold acclimation in birds. In this study, we measured SERCA uncoupling in the pectoralis flight muscle of control (18°C) and cold-acclimated (−8°C) dark-eyed juncos (Junco hyemalis) that exhibited suppressed SLN transcription in the cold. We measured SERCA activity and Ca2+ uptake rates for the first time in cold-acclimated birds and found greater SERCA uncoupling in the muscle of juncos in the cold. However, SERCA uncoupling was not related to SLN or PLN transcription or measures of mitochondrial biogenesis. Nonetheless, SERCA uncoupling reduced an individual’s risk of hypothermia in the cold. Therefore, while SERCA uncoupling in the cold could be indicative of NST, it does not appear to be mediated by known regulatory proteins in these birds. These results prompt interesting questions about the significance of SLN and PLN in birds and the role of SERCA uncoupling in response to environmental conditions.

Funder

National Science Foundation

University of Massachusetts Amherst

Publisher

Oxford University Press (OUP)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3