Deterioration of muscle force and contractile characteristics are early pathological events in spinal and bulbar muscular atrophy mice

Author:

Gray Anna L.1,Annan Leonette1,Dick James R. T.1,La Spada Albert R.2345,Hanna Michael G.1,Greensmith Linda1,Malik Bilal1ORCID

Affiliation:

1. Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK

2. Departments of Neurology, Duke University School of Medicine, Durham, USA

3. Neurobiology, Duke University School of Medicine, Durham, USA

4. Cell Biology, Duke University School of Medicine, Durham, USA

5. Duke Centre for Neurodegeneration & Neurotherapeutics, Duke University School of Medicine, Durham, USA

Abstract

Spinal and bulbar muscular atrophy (SBMA), also known as Kennedy's Disease, is a late-onset, X-linked, progressive neuromuscular disease, which predominantly affects males. The pathological hallmarks of the disease are defined by selective loss of spinal and bulbar motor neurons, accompanied by weakness, atrophy and fasciculations of bulbar and limb muscles. SBMA is caused by a CAG repeat expansion in the gene that encodes the androgen receptor (AR) protein. Disease manifestation is androgen dependent and results principally from a toxic gain of AR function. There are currently no effective treatments for this debilitating disease. It is important to understand the course of the disease in order to target therapeutics to key pathological stages. This is especially relevant in disorders such as SBMA, where disease can be identified prior to symptom onset, through family history and genetic testing. To fully characterise the role of muscle in SBMA, we undertook a longitudinal physiological and histological characterisation of disease progression in the AR100 mouse model of SBMA. Our results show that the disease first manifests in skeletal muscle, prior to any motor neuron degeneration, which only occurs in late stage disease. These findings reveal alterations in muscle function, including reduced muscle force and changes in contractile characteristics, are early pathological events in SBMA mice and suggest that muscle-targeted therapeutics may be effective in SBMA.

Funder

Motor Neurone Disease Association

Medical Research Council

Kennedy's Disease Association

Brain Research Trust

French Muscular Dystrophy Association

Association Française contre les Myopathies

National Institutes of Health

Muscular Dystrophy Association

Publisher

The Company of Biologists

Subject

General Biochemistry, Genetics and Molecular Biology,Immunology and Microbiology (miscellaneous),Medicine (miscellaneous),Neuroscience (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3