PolyGR and polyPR knock-in mice reveal a conserved neuroprotective extracellular matrix signature in C9orf72 ALS/FTD neurons
-
Published:2024-02-29
Issue:4
Volume:27
Page:643-655
-
ISSN:1097-6256
-
Container-title:Nature Neuroscience
-
language:en
-
Short-container-title:Nat Neurosci
Author:
Milioto CarmeloORCID, Carcolé MireiaORCID, Giblin AshlingORCID, Coneys Rachel, Attrebi Olivia, Ahmed Mhoriam, Harris Samuel S., Lee Byung Il, Yang Mengke, Ellingford Robert A., Nirujogi Raja S., Biggs Daniel, Salomonsson SallyORCID, Zanovello Matteo, de Oliveira Paula, Katona Eszter, Glaria IdoiaORCID, Mikheenko Alla, Geary Bethany, Udine Evan, Vaizoglu Deniz, Anoar Sharifah, Jotangiya Khrisha, Crowley GerardORCID, Smeeth Demelza M., Adams Mirjam L., Niccoli Teresa, Rademakers RosaORCID, van Blitterswijk Marka, Devoy AnnyORCID, Hong SoyonORCID, Partridge Linda, Coyne Alyssa N.ORCID, Fratta PietroORCID, Alessi Dario R.ORCID, Davies BenORCID, Busche Marc AurelORCID, Greensmith Linda, Fisher Elizabeth M. C.ORCID, Isaacs Adrian M.ORCID
Abstract
AbstractDipeptide repeat proteins are a major pathogenic feature of C9orf72 amyotrophic lateral sclerosis (C9ALS)/frontotemporal dementia (FTD) pathology, but their physiological impact has yet to be fully determined. Here we generated C9orf72 dipeptide repeat knock-in mouse models characterized by expression of 400 codon-optimized polyGR or polyPR repeats, and heterozygous C9orf72 reduction. (GR)400 and (PR)400 knock-in mice recapitulate key features of C9ALS/FTD, including cortical neuronal hyperexcitability, age-dependent spinal motor neuron loss and progressive motor dysfunction. Quantitative proteomics revealed an increase in extracellular matrix (ECM) proteins in (GR)400 and (PR)400 spinal cord, with the collagen COL6A1 the most increased protein. TGF-β1 was one of the top predicted regulators of this ECM signature and polyGR expression in human induced pluripotent stem cell neurons was sufficient to induce TGF-β1 followed by COL6A1. Knockdown of TGF-β1 or COL6A1 orthologues in polyGR model Drosophila exacerbated neurodegeneration, while expression of TGF-β1 or COL6A1 in induced pluripotent stem cell-derived motor neurons of patients with C9ALS/FTD protected against glutamate-induced cell death. Altogether, our findings reveal a neuroprotective and conserved ECM signature in C9ALS/FTD.
Publisher
Springer Science and Business Media LLC
Reference77 articles.
1. DeJesus-Hernandez, M. et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 72, 245–256 (2011). 2. Renton, A. E. et al. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 72, 257–268 (2011). 3. Balendra, R. & Isaacs, A. M. C9orf72-mediated ALS and FTD: multiple pathways to disease. Nat. Rev. Neurol. 14, 544–558 (2018). 4. Zu, T. et al. Non-ATG-initiated translation directed by microsatellite expansions. Proc. Natl Acad. Sci. USA 108, 260–265 (2011). 5. Ash, P. E. A. et al. Unconventional translation of C9ORF72 GGGGCC expansion generates insoluble polypeptides specific to c9FTD/ALS. Neuron 77, 639–646 (2013).
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|