Affiliation:
1. Department of Biological Sciences, University of Cincinnati, PO Box 210006, Cincinnati, OH 45221-0006, USA
Abstract
SUMMARYTraversing gaps with different orientations within arboreal environments has ecological relevance and mechanical consequences for animals. For example, the orientation of the animal while crossing gaps determines whether the torques acting on the body tend to cause it to pitch or roll from the supporting perch or fail as a result of localized bending. The elongate bodies of snakes seem well suited for crossing gaps, but a long unsupported portion of the body can create large torques that make gap bridging demanding. We tested whether the three-dimensional orientation of substrates across a gap affected the performance and behavior of an arboreal snake (Boiga irregularis). The snakes crossed gaps 65% larger for vertical than for horizontal trajectories and 13% greater for straight trajectories than for those with a 90 deg turn within the horizontal plane. Our results suggest that failure due to the inability to keep the body rigid at the edge of the gap may be the primary constraint on performance for gaps with a large horizontal component. In addition, the decreased performance when the destination perch was oriented at an angle to the long axis of the initial perch was probably a result of the inability of snakes to maintain balance due to the large rolling torque. For some very large gaps the snakes enhanced their performance by using rapid lunges to cross otherwise impassable gaps. Perhaps such dynamic movements preceded the aerial behavior observed in other species of arboreal snakes.
Publisher
The Company of Biologists
Subject
Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics
Cited by
71 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献