Influence of posture during gliding flight in the flying lizard Draco volans

Author:

Buffa ValentinORCID,Salaün William,Cinnella Paola

Abstract

Abstract The agamid lizards of the genus Draco are undoubtedly the most renown reptilian gliders, using their rib-supported patagial wings as lifting surfaces while airborne. Recent investigations into these reptiles highlighted the role of body posture during gliding, however, the aerodynamics of postural changes in Draco remain unclear. Here, we examine the aerodynamics and gliding performances of Draco volans using a numerical approach focusing on three postural changes: wing expansion, body camber, and limb positioning. To this aim, we conducted 70 three-dimensional steady-state computational fluid dynamics simulations of gliding flight and 240 two-dimensional glide trajectory calculations. Our results demonstrate that while airborne, D. volans generates a separated turbulent boundary layer over its wings characterized by a large recirculation cell that is kept attached to the wing surface by interaction with wing–tip vortices, increasing lift generation. This lift generating mechanism may be controlled by changing wing expansion and shape to modulate the generation of aerodynamic force. Furthermore, our trajectory simulations highlight the influence of body camber and orientation on glide range. This sheds light on how D. volans controls its gliding performance, and conforms to the observation that these animals plan their glide paths prior to take off. Lastly, D. volans is mostly neutral in pitch and highly maneuverable, similar to other vertebrate gliders. The numerical study presented here thus provides a better understanding of the lift generating mechanism and the influence of postural changes in flight in this emblematic animal and will facilitate the study of gliding flight in analogous gliding reptiles for which direct observations are unavailable.

Funder

National Research Foundation

Ministère de l’Enseignement Supérieur et de la Recherche Scientifique

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3