Kinematics of hovering hummingbird flight along simulated and natural elevational gradients

Author:

Altshuler Douglas L.1,Dudley Robert12

Affiliation:

1. Section of Integrative Biology, University of Texas at Austin, Austin,Texas 78712, USA

2. Smithsonian Tropical Research Institute, PO Box 2072, Balboa, Republic of Panama

Abstract

SUMMARY Hovering flight is one of the most energetically demanding forms of animal locomotion. Despite the cost, hummingbirds regularly hover at high elevations,where flight is doubly challenging because of reduced air density and oxygen availability. We performed three laboratory experiments to examine how air density and oxygen partial pressure influence wingbeat kinematics. In the first study, we experimentally lowered air density but maintained constant oxygen partial pressure. Under these hypodense but normoxic conditions,hummingbirds increased stroke amplitude substantially and increased wingbeat frequency slightly. In the second experiment, we maintained constant air density but decreased oxygen partial pressure. Under these normodense but hypoxic conditions, hummingbirds did not alter stroke amplitude but instead reduced wingbeat frequency until they could no longer generate enough vertical force to offset body weight. In a final combined experiment, we decreased air density but increased oxygen availability, and found that the wingbeat kinematics were unaffected by supplemental oxygen. We also studied hovering and maximally loaded flight performance for 43 hummingbird species distributed along a natural elevational gradient in Peru. During free hovering flight, hummingbirds showed increased stroke amplitude interspecifically at higher elevations, mirroring the intra-individual responses in our first laboratory experiment. During loaded flight,hummingbirds increased both wingbeat frequency and wing stroke amplitude by 19% relative to free-flight values at any given elevation. We conclude that modulation of wing stroke amplitude is a major compensatory mechanism for flight in hypodense or hypobaric environments. By contrast, increases in wingbeat frequency impose substantial metabolic demands, are only elicited transiently and anaerobically, and cannot be used to generate additional sustained lift at high elevations.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3