The ecological and evolutionary interface of hummingbird flight physiology

Author:

Altshuler Douglas L.1,Dudley Robert12

Affiliation:

1. Section of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA

2. Smithsonian Tropical Research Institute, PO Box 2072, Balboa, Republic of Panama

Abstract

SUMMARYThe hovering ability, rapidity of maneuvers and upregulated aerobic capacity of hummingbirds have long attracted the interest of flight biologists. The range of intra- and interspecific variation in flight performance among hummingbirds, however, is equally impressive. A dominant theme in hummingbird evolution is progressive invasion of higher-elevation habitats. Hypobaric challenge is met behaviorally through compensatory changes in wingbeat kinematics, particularly in stroke amplitude. Over evolutionary time scales, montane colonization is associated with increases in body mass and relative wing area. Hovering ability has been well-studied in several North American hummingbird taxa, yet the broad range of interspecific variation in hummingbird axial and appendicular anatomy remains to be assessed mechanistically. Such varied features as tail length, molt condition and substantial weight change due to lipid-loading can dramatically alter various features of the flight envelope. Compared with our present knowledge of hovering performance in hummingbirds, the mechanics of forward flight and maneuvers is not well understood.Relationships among flight-related morphology, competitive ability and foraging behavior have been the focus of numerous studies on tropical and temperate hummingbirds. Ecologists have hypothesized that the primary selective agents on hummingbird flight-related morphology are the behaviors involved in floral nectar consumption. However, flight behaviors involved in foraging for insects may also influence the evolution of wing size and shape. Several comparisons of hummingbird communities across elevational gradients suggest that foraging strategies and competitive interactions within and among species vary systematically across elevations as the costs of flight change with body size and wing shape.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 57 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3