Affiliation:
1. Information Technology University, Pakistan
2. Faculty of Computing and Information Technology, King Abdulaziz University, Saudi Arabia
Abstract
Despite the increase in the adoption of online educational platforms, student retention is still a challenging task with a number of students having low performance margins during these courses. This chapter intends to predict student performance based on their learning behavior on the basis of their logging data history, using the publicly available Open University Learning Analytics Dataset. To model this problem, logistic regression (LR) is used as a baseline technique. Additionally, random forest (RF), multiple layered perceptron with multiple activation functions, and Gaussian Naïve Bayes are also deployed. The results demonstrate that RF outperforms the baseline LR and other models with 89% accuracy, 89% precision, 88% recall, and 88% F1-score. Finally, the authors conclude that using the above-mentioned models, students “at-risk” can be identified which can be managed by an alert mechanism to improve student success rate by making timely interventions.
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献