Low-Power High-Performance Tunnel FET With Analysis for IoT Applications

Author:

Tripathi Suman Lata1ORCID

Affiliation:

1. Lovely Professional University, India

Abstract

The emerging tunnel FET is analysed in terms of ON-state current, OFF-state current, subthreshold slope, switching capacitance to explore its applications for smaller size low-power high-speed digital and memory applications that are an integral part of portable intelligent devices for IoT applications. A large portion of IoT systems are associated with these embedded SRAM/DRAM memories that contribute to a major portion of power dissipation in systems-on-chip (SoCs) or digital design. Several SRAM cell-based memory designs with TFET structures are compared to focus their applications. The ambilpolar nature of TFET structures are investigated for highly random, unclonable secured hardware systems. New circuit designs with TFET were explored for turn-on voltage reduction, ON-state resistance reduction, and reverse leakage reduction techniques that plays an important role in designing efficient energy-harvesting systems.

Publisher

IGI Global

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3