Influence of material thickness and hatching strategies on laser cutting of epoxy mold composites

Author:

Kohl Jannis12ORCID,Will Thomas123ORCID,Klier Tobias2,Müller Lars2,Goth Christian2ORCID

Affiliation:

1. Friedrich-Alexander-Universität Erlangen-Nürnberg 1 , 91054 Erlangen, Germany

2. Vitesco Technologies Germany GmbH 2 , Nürnberg 90411, Germany

3. Erlangen Graduate School in Advanced Optical Technologies (SAOT), Friedrich-Alexander-Universität Erlangen-Nürnberg 3 , 91052 Erlangen, Germany

Abstract

Glass-filled composites are used for overmolding of electrical components due to their good electrical isolation properties. Laser cutting is a preferred technology to remove excess mold material to achieve a low surface roughness and reduce tool wear. Hatching strategies improve the laser-cutting process of carbon fiber-reinforced polymers toward lower cutting times and a more homogeneous cut surface. The impact of hatching strategies on epoxy mold compounds has been so far unknown as the laser-cutting strategy was based on multiple single passes in previous studies. This work investigates the effects of hatching strategies such as perpendicular hatching, parallel hatching, and a single line, including the influence of material thickness and filler content regarding the cutting time, kerf taper angle, and heat-affected zone, using a 50 W short-pulsed fiber laser for different highly filled epoxy mold compounds. Results show that the use of a hatching strategy is required to cut workpieces at thicknesses of 4 mm or higher due to the sieving size of the filler. Perpendicular hatching needs to be chosen when the aim is a minimal cutting time. The kerf taper angle at the top of the cut is below 4° while hatching leads to a more pronounced kink of up to 25° occurring toward the bottom of the cut. Meanwhile, an increase in filler concentration leads to an increase in cutting time, because of higher thermal conduction, while no effect on the kerf taper angle or the heat-affected zone can be identified.

Publisher

Laser Institute of America

Subject

Instrumentation,Biomedical Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3