A review of silver nanowire-based composites for flexible electronic applications

Author:

Sharma Neha,Nair Nitheesh MORCID,Nagasarvari Garikapati,Ray DebduttaORCID,Swaminathan ParasuramanORCID

Abstract

Abstract Silver nanowires (Ag NWs) have become a ubiquitous part of flexible electronic devices. The good electrical conductivity of silver, coupled with the excellent ductility and bendability exhibited by the wires make them ideal for flexible devices. Additionally, deposited films of Ag NWs are also found to be transparent due to the incomplete areal coverage of the wires. Thus, Ag NWs are widely used as transparent conducting electrodes (TCEs) for flexible and wearable electronics, replacing the traditionally used metal oxide based TCEs. The properties and functionality of NWs can be further improved by forming composites with other materials. Composites have been synthesized by combining Ag NWs with metals, metal oxides, and polymers. Both dry- and wet-techniques have been used to synthesize and deposit these composites, which have unique structural, chemical, and functional properties leading to myriad applications. This review focuses on recent developments in the field of Ag NW-based composites. An overview of the various fabrication techniques is provided, with a particular focus on coating and printing techniques, which are widely used for depositing Ag NWs. The application of the composites in diverse fields is also discussed. While the most common application for these composites is as TCEs, they are also used in sensors (physical, chemical, and biological), displays, and energy-related applications. The structural and environmental stability of the composites is also discussed. Given the wide interest in the development of printed flexible electronic devices, new Ag NW-based composites and application areas can be expected to be developed going forward.

Funder

Ministry of Human Resource Development

Indian Institute of Technology Madras

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3