Investigating the optical and electrical performance of rod coated silver nanowire-based transparent conducting films

Author:

Thomas NeethuORCID,S BharathkumarORCID,Mathew Koshy AarjuORCID,Basavaraj Madivala GORCID,Swaminathan ParasuramanORCID

Abstract

Abstract Silver nanowires (Ag NWs) are highly promising building blocks for developing transparent conducting films (TCFs) due to their high electrical conductivity and good optical transparency. The large-scale production of Ag NW-based high-quality TCFs using low-cost processing methods can replace the traditional oxide based TCFs. Therefore, developing a reliable technique for large-scale fabrication of Ag NW-based TCFs is vital. This work involves the synthesis of Ag NWs, the fabrication of large-area Ag NW-based TCFs using a simple rod coating process, its optimization, and the performance analysis of the fabricated TCFs, including their demonstration as transparent heaters. The polyol synthesis method produces Ag NWs of lengths ranging from 25–110 µm and diameters from 80–180 nm. The effect of Ag NW length, the number of coating passes, and the volume of the NW dispersion used per coating pass on the electrical and optical properties of the TCFs are studied by quantifying sheet resistance ( R s ) and transmittance (T) of the film. The performance of the fabricated film is evaluated by estimating the figure of merit (FoM) in both percolative and bulk regimes. The TCF made with NWs of length 25.7 µm and diameter 85.1 nm had the largest value of bulk FoM (101.3), percolative FoM (43.9), and, conductivity exponent (0.6). This elucidated the superior performance of the fabricated TCFs over those fabricated by other techniques. The critical thickness of the film ( t min ), at the crossover between the percolation and bulk, scales with the shortest dimension of the NW, namely its diameter. The percolative FoM showed an increase, with a decrease in both sheet resistance and diameter of the NWs, with lower n. The fabricated TCF is tested as a transparent heater and the demonstration proves that rod coated Ag NW-based TCFs can be used for transparent electrode applications.

Funder

Indian Institute of Technology Madras

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3