Characterization of β-Ga2O3 homoepitaxial films and MOSFETs grown by MOCVD at high growth rates

Author:

Tadjer Marko JORCID,Alema Fikadu,Osinsky Andrei,Mastro Michael A,Nepal Neeraj,Woodward Jeffrey M,Myers-Ward Rachael L,Glaser Evan R,Freitas Jaime A,Jacobs Alan G,Gallagher James C,Mock Alyssa L,Pennachio Daniel J,Hajzus Jenifer,Ebrish Mona,Anderson Travis J,Hobart Karl D,Hite Jennifer K,Eddy Jr. Charles RORCID

Abstract

Abstract The ultra-wide bandgap semiconductor gallium oxide (Ga2O3) offers substantial promise to significantly advance power electronic devices as a result of its high breakdown electric field and maturing substrate technology. A key remaining challenge is the ability to grow electronic-grade epitaxial layers at rates consistent with 20–40 μm thick drift regions needed for 20 kV and above technologies. This work reports on extensive characterization of epitaxial layers grown in a novel metalorganic chemical vapor deposition tool that permits growth rates of 1.0–4.0 μm h−1. Specifically, optical, structural and electrical properties of epilayers grown at ∼1 μm h−1 are reported, including employment in an operating MOSFET. The films demonstrate relatively smooth surfaces with a high degree of structural order, limited point defectivity (Nd − Na ≈ 5 × 1015 cm−3) and an optical bandgap of 4.50 eV. Further, when employed in a MOSFET test structure with an n+ doped channel, a record high mobility for a transistor structure with a doped channel of 170 cm2 V−1 s−1 was measured via the Hall technique at room temperature. This work reports for the first time a β-Ga2O3 MOSFET grown using Agnitron Technology’s high growth rate MOCVD homoepitaxial process. These results clearly establish a significant improvement in epilayer quality at growth rates that can support future high voltage power device technologies.

Funder

Office of Naval Research

Air Force Office of Scientific Research

Publisher

IOP Publishing

Subject

Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3