Abstract
Abstract
We investigated the effect of top contact interface and microstructural characteristics of the insulating layers on resistive switching behaviors by fabricating and characterizing the HfO2/ZnO bilayer heterostructures. Different thickness of ZnO underlying layer and different deposition temperatures of the upper HfO2 layer were designed to analyze the intrinsic contribution of the crystalline microstructure of the insulating bilayer. Pt and Ti top electrodes were used to demonstrate the extrinsic contribution of the interface configuration. It was observed that all devices show bipolar RS characteristics. Unlike the device composed of Pt/HfO2/ZnO/Pt that exhibit an abrupt switching, a gradually continuous switching in the reset process was identified in the device composed of Ti/HfO2/ZnO/Pt. Interfacial charge migration process/characteristic plays a key role in the RS process as well as its conduction mechanism. The RS performance of the former is significantly better than that of the latter, including much lower reset voltage, two orders of magnitude larger OFF/ON ratio and HRS resistance. In addition, as compared to the intrinsic contribution arising from the microstructure of the HfO2/ZnO bilayer to the RS performances and current transport mechanism, the extrinsic effect contributed from the electrode characteristics (and its interface) is dominant.
Funder
Nanjing University of Posts and Telecommunications
talent
Natural Science Foundation of Jiangsu Province
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献