Improved resistive switching characteristics of solution processed ZrO2/SnO2 bilayer RRAM via oxygen vacancy differential

Author:

Choi Kihwan,Pak James JunghoORCID

Abstract

Abstract In this study, a solution-processed bilayer structure ZrO2/SnO2 resistive switching (RS) random access memory (RRAM) is presented for the first time. The precursors of SnO2 and ZrO2 are Tin(Ⅱ) acetylacetonate (Sn(AcAc)2) and zirconium acetylacetonate (Zr(C5H7O2)4), respectively. The top electrode was deposited with Ti using an E-beam evaporator, and the bottom electrode used an indium–tin–oxide glass wafer. We created three devices: SnO2 single-layer, ZrO2 single-layer, and ZrO2/SnO2 bilayer devices, to compare RS characteristics such as the IV curve and endurance properties. The SnO2 and ZrO2 single-layer devices showed on/off ratios of approximately 2 and 51, respectively, along with endurance switching cycles exceeding 50 and 100 DC cycles. The bilayer device attained stable RS characteristics over 120 DC endurance switching cycles and increased on/off ratio ∼2.97 × 102. Additionally, the ZrO2/SnO2 bilayer bipolar switching mechanism was explained by considering the Gibbs free energy (ΔG o) difference in the ZrO2 and SnO2 layers, where the formation and rupture of conductive filaments were caused by oxygen vacancies. The disparity in the concentration of oxygen vacancies, as indicated by the Gibbs free energy difference between ZrO2G o = −1100 kJ mol−1) and SnO2G o = −842.91 kJ mol−1) implied that ZrO2 exhibited a higher abundance of oxygen vacancies compared to SnO2, resulting in improved endurance and on/off ratio. X-ray photoelectron spectroscopy analyzed oxygen vacancies in ZrO2 and SnO2 thin films. The resistance switching characteristics were improved due to the bilayer structure, which combines a higher oxygen vacancy concentration in one layer with a lower oxygen vacancy concentration in the switching layer. This configuration reduces the escape of oxygen vacancies to the electrode during RS.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3