Fabrication of 2D silicon nano-mold by side etch lift-off method

Author:

Guo RanORCID,Qi LipingORCID,Xu Liang,Liu Lingpeng,Sun LeiORCID,Yin Zhifu,Li Kehong,Zou HelinORCID

Abstract

Abstract Nano-imprint technology is a method of nano-pattern reproduction, has the characteristics of high resolution, high throughput, and low-cost. It can reduce the complexity and cost of the equipment while improving the resolution, which considered a promising industrial production technology. The key to nanoimprinting lies in the mold, and the quality of the mold directly determines the quality of the imprinted graphics. Here, a method for fabricating sub-100 nm concave 2D silicon nano-mold by side etch lift-off is proposed. The effects of different wet etching time and the metal deposition angle on the width of nanochannels were studied. The measurement result of dry etching shows that on the entire 4 inch silicon wafer, the width of the nanochannel varies by 4% and the depth by 2%. The width of the nanochannel between chips varies by 0.7%, and the depth variation is 1%. With this new method, high-precision and large-scale silicon nano-mold can be produced, which has great potential for realizing high-precision and low-cost manufacturing of nano devices.

Funder

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3