Abstract
Abstract
Electrohydrodynamic-jet printing (E-jet printing) is a direct-writing technology for manufacturing micro-nano devices. To further reduce the inner diameter of the nozzle to improve the printing resolution, a large-scale manufacturing method of SU-8 polymer micro/nanoscale nozzle by means of a process combining UV exposure and hot embossing was proposed. To improve the adhesive strength between the UV mask and SU-8, the influence of the oxygen plasma treatment parameters on the water contact angles of the UV mask was analyzed. The effect of hot embossing time and temperature on the replication precision was studied. The influence of UV exposure parameters and thermal bonding parameters on the micro and nanochannel pattern was investigated. The SU-8 polymer nozzles with 188 ± 3 nm wide and 104 ± 2 nm deep nanochannels were successfully fabricated, and the replication precision can reach to 98.5%. The proposed manufacturing method of SU-8 polymer nozzles in this study will significantly advance the research on the transport properties of nanoscale channels in E-jet nozzles and facilitate further advancements in E-jet based applications.
Funder
Excellent Postdoctoral Program of Jiangsu Province
Natural Science Foundation of Jiangsu Province
National Natural Science Foundation of China