Author:
Kooy Nazrin,Mohamed Khairudin,Pin Lee Tze,Guan Ooi Su
Abstract
Abstract
Since its introduction in 1995, nanoimprint lithography has been demonstrated in many researches as a simple, low-cost, and high-throughput process for replicating micro- and nanoscale patterns. Due to its advantages, the nanoimprint lithography method has been rapidly developed over the years as a promising alternative to conventional nanolithography processes to fulfill the demands generated from the recent developments in the semiconductor and flexible electronics industries, which results in variations of the process. Roll-to-roll (R2R) nanoimprint lithography (NIL) is the most demanded technique due to its high-throughput fulfilling industrial-scale application. In the present work, a general literature review on the various types of nanoimprint lithography processes especially R2R NIL and the methods commonly adapted to fabricate imprint molds are presented to provide a clear view and understanding on the nanoimprint lithography technique as well as its recent developments.
PACS
81.16.Nd
Publisher
Springer Science and Business Media LLC
Subject
Condensed Matter Physics,General Materials Science
Reference64 articles.
1. Liu L, Zhang Y, Wang W, Gu C, Bai X, Wang E: Nanosphere lithography for the fabrication of ultranarrow graphene nanoribbons and on-chip bandgap tuning of graphene. Adv Mater 2011, 23: 1246–1251. 10.1002/adma.201003847
2. Mohamed K: Three-dimensional patterning using ultraviolet curable nanoimprint lithography. PhD thesis. University of Canterbury, Electrical and Computer Engineering; 2009.
3. Chou SY, Krauss PR, Renstrom PJ: Imprint of sub‒25 nm vias and trenches in polymers. Appl Phys Lett 1995, 67: 3114–3116. 10.1063/1.114851
4. Guo LJ: Nanoimprint lithography: methods and material requirements. Adv Mater 2007, 19: 495–513. 10.1002/adma.200600882
5. Alkaisi MM, Mohamed K: Three-dimensional patterning using ultraviolet nanoimprint lithography. In Lithography. Edited by: Wang M. Rijeka: InTech; 2010:571–595.
Cited by
286 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献