Fabrication of High Aspect Ratio Nano-Channels by Thermal Nano-Imprinting and Parylene Deposition

Author:

Yang Kun1ORCID,Yin Zhifu23,Sun Lei1ORCID

Affiliation:

1. Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China

2. State Key Laboratory of Electrical Insulation and Power Equipment, Xi’an Jiaotong University, Xi’an 710049, China

3. The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China

Abstract

A low-cost method of fabrication of high aspect ratio nano-channels by thermal nano-imprinting and Parylene deposition is proposed. SU-8 photoresist nano-channels were first manufactured by thermal nano-imprinting, and Parylene deposition was carried out to reduce the width of the nano-channels and increase the aspect ratio. During the process, the side walls of the SU-8 nano-channels were covered with the Parylene film, reducing the width of the nano-channels, and the depth of the channels increased due to the thickness of the Parylene film deposited on the surface of the SU-8 nano-channels, more so than that at the bottom. The influence of Parylene mass on the size of nano-channels was studied by theoretical analysis and experiments, and the deposition pressure of Parylene was optimized. The final high aspect ratio nano-channels are 46 nm in width and 746 nm in depth, of which the aspect ratio is 16. This simple and efficient method paves the way for the production of high aspect ratio nano-channels.

Funder

Basic Research Program of Shanxi for Youths

State Key Laboratory of Electrical Insulation and Power Equipment

State Key Laboratory of Refractories and Metallurgy

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3