Abstract
Abstract
Shot-to-shot, or pixel-to-pixel, dose variation during electron-beam lithography is a significant practical and fundamental problem. Dose variations associated with charging, electron source instability, optical system drift, and ultimately shot noise in the e-beam itself conspire to critical dimension variability, line width/edge roughness, and limited throughput. It would be an important improvement to e-beam based patterning technology if real-time feedback control of electron-dose were provided so that pattern quality and throughput would be improved beyond the shot noise limit. In this paper, we demonstrate control of e-beam dose based on the measurement of electron arrival at the sample where patterns are written, rather than from the source or another point in the electron optical column. Our results serve as the first steps towards real-time dose control and eventually overcoming the shot noise.
Funder
National Science Foundation
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献