Review on 3D growth engineering and integration of nanowires for advanced nanoelectronics and sensor applications

Author:

Hu Ruijin,Yu LinweiORCID

Abstract

Abstract Recent years have witnessed increasing efforts devoted to the growth, assembly and integration of quasi-one dimensional (1D) nanowires (NWs), as fundamental building blocks in advanced three-dimensional (3D) architecture, to explore a series of novel nanoelectronic and sensor applications. An important motivation behind is to boost the integration density of the electronic devices by stacking more functional units in the out-of-plane z-direction, where the NWs are supposed to be patterned or grown as vertically standing or laterally stacked channels to minimize their footprint area. The other driving force is derived from the unique possibility of engineering the 1D NWs into more complex, as well as more functional, 3D nanostructures, such as helical springs and kinked probes, which are ideal nanostructures for developping advanced nanoelectromechanical system (NEMS), bio-sensing and manipulation applications. This Review will first examine the recent progresses made in the construction of 3D nano electronic devices, as well as the new fabrication and growth technologies established to enable an efficient 3D integration of the vertically standing or laterally stacked NW channels. Then, the different approaches to produce and tailor more sophisticated 3D helical springs or purposely-designed nanoprobes will be revisited, together with their applications in NEMS resonators, bio sensors and stimulators in neural system.

Funder

National Science Foundation of China

Micro-fabrication and Integration Technology Center of Nanjing University

National Key R&D Program of China

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3